10 research outputs found

    Towards event-by-event studies of the ultrahigh-energy cosmic-ray composition

    Get PDF
    We suggest a method which improves the precision of studies of the primary composition of ultra-high-energy cosmic rays. Two principal ingredients of the method are (1) comparison of the observed and simulated parameters for individual showers, without averaging over arrival directions and (2) event-by-event selection of simulated showers by the physical observables and not by the reconstructed primary parameters. A detailed description of the algorithm is presented and illustrated by several examples.Comment: 27 pages, 6 figures; v2: 30 pages, journal versio

    Large closed queueing networks in semi-Markov environment and its application

    Full text link
    The paper studies closed queueing networks containing a server station and kk client stations. The server station is an infinite server queueing system, and client stations are single-server queueing systems with autonomous service, i.e. every client station serves customers (units) only at random instants generated by a strictly stationary and ergodic sequence of random variables. The total number of units in the network is NN. The expected times between departures in client stations are (Nμj)1(N\mu_j)^{-1}. After a service completion in the server station, a unit is transmitted to the jjth client station with probability pjp_{j} (j=1,2,...,k)(j=1,2,...,k), and being processed in the jjth client station, the unit returns to the server station. The network is assumed to be in a semi-Markov environment. A semi-Markov environment is defined by a finite or countable infinite Markov chain and by sequences of independent and identically distributed random variables. Then the routing probabilities pjp_{j} (j=1,2,...,k)(j=1,2,...,k) and transmission rates (which are expressed via parameters of the network) depend on a Markov state of the environment. The paper studies the queue-length processes in client stations of this network and is aimed to the analysis of performance measures associated with this network. The questions risen in this paper have immediate relation to quality control of complex telecommunication networks, and the obtained results are expected to lead to the solutions to many practical problems of this area of research.Comment: 35 pages, 1 figure, 12pt, accepted: Acta Appl. Mat

    Results from Tunka-133 (5 years observation) and from the Tunka-HiSCORE prototype

    No full text
    Data obtained with two detectors located at the Tunka Cosmic Ray facility are presented. The Cherenkov light array for registration of extensive air showers (EAS) Tunka-133 collected data during 5 winter seasons since 2009 to 2014. The differential energy spectrum of all particles and the dependence of the average maximum depth on the energy in the range of 6 · 1015−1018 eV measured for 1540 hours of observation are presented. The preliminary all particle energy spectrum by the data of Tunka-HiSCORE prototype array, installed in 2013, is presented. Some additional experiments in the Tunka Valley are briefly described

    Results from Tunka-133 (5 years observation) and from the Tunka-HiSCORE prototype

    No full text
    Data obtained with two detectors located at the Tunka Cosmic Ray facility are presented. The Cherenkov light array for registration of extensive air showers (EAS) Tunka-133 collected data during 5 winter seasons since 2009 to 2014. The differential energy spectrum of all particles and the dependence of the average maximum depth on the energy in the range of 6 · 1015−1018 eV measured for 1540 hours of observation are presented. The preliminary all particle energy spectrum by the data of Tunka-HiSCORE prototype array, installed in 2013, is presented. Some additional experiments in the Tunka Valley are briefly described

    TAIGA the Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy - present status and perspectives.

    No full text
    TAIGA stands for ``Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy'' and is a project to built a complex, hybrid detector system for ground-based gamma-ray astronomy from a few TeV to several PeV, and for cosmic ray studies from 100 TeV to 1 EeV. TAIGA will search for ``PeVatrons'' (ultra-high energy gamma-ray sources) and measure the composition and spectrum of cosmic rays in the knee region (100 TeV–10 PeV) with good energy resolution and high statistics. TAIGA will include Tunka-HiSCORE — an array of wide-angle air Cherenkov stations, an array of Imaging Atmospheric Cherenkov Telescopes, an array of particle detectors, both on the surface and underground and the TUNKA-133 air Cherenkov array
    corecore